We study numerically nonlinear responses of a periodically forced Hodgkin-Huxley neuron. The coherence of the system in the absence of external noise, namely, the "intrinsic stochastic resonance," is evidenced by the multimodal aperiodic firing pattern, a bell-shaped curve in the signal-to-noise ratio, and the statistical features of the mean firing rate. The subthreshold intrinsic oscillations enhance the signal transduction in a manner different from that in models studied previously.