The protozoan parasite Leishmania undergoes a morphological and biochemical transformation from the promastigote to the amastigote form during its life cycle, which is reflected in the expression of stage-specific proteins. One of these proteins shows homology to a superfamily of reductase proteins. We have cloned the reductase gene from L donovani and have shown that it differs in only one nucleotide from the L. major homologue, resulting in one amino acid change. A cytosine (C) to guanine (G) transposition in the coding sequence leads to a nonconserved substitution of asparagine (N) for lysine (K). Only 2 of 22 plasma samples from patients with visceral leishmaniasis were found to have detectable anti-reductase antibodies and peripheral blood mononuclear cells (PBMC) from one of three individuals previously infected with visceral leishmaniasis proliferated in the presence of recombinant reductase protein. Interestingly, 6 of 10 PBMC isolated from Danish controls proliferated in the presence of the reductase protein. Intracellular IFNgamma was found in a significant percentage of cells in all the tested PBMC cultures from Danes, whereas IL4 was only found in a small proportion of cells, or not at all. The results indicate the presence of cross-reacting CD45R0 memory T-cells in individuals not exposed to Leishmania. Several previous studies have shown that T-cells from nonexposed individuals often respond to crude Leishmania antigen preparations. The present study suggests that this reactivity is partly caused by T-cells recognising L. donovani reductase.