Subsite specificity of memapsin 2 (beta-secretase): implications for inhibitor design

Biochemistry. 2001 Aug 28;40(34):10001-6. doi: 10.1021/bi015546s.

Abstract

Memapsin 2 is the protease known as beta-secretase whose action on beta-amyloid precursor protein leads to the production of the beta-amyloid (Abeta) peptide. Since the accumulation of Abeta in the brain is a key event in the pathogenesis of Alzheimer's disease, memapsin 2 is an important target for the design of inhibitory drugs. Here we describe the residue preference for the subsites of memapsin 2. The relative k(cat)/K(M) values of residues in each of the eight subsites were determined by the relative initial cleavage rates of substrate mixtures as quantified by MALDI-TOF mass spectrometry. We found that each subsite can accommodate multiple residues. The S(1) subsite is the most stringent, preferring residues in the order of Leu > Phe > Met > Tyr. The preferences of other subsites are the following: S(2), Asp > Asn > Met; S(3), Ile > Val > Leu; S(4), Glu > Gln > Asp; S(1)', Met > Glu > Gln > Ala; S(2)', Val > Ile > Ala; S(3)', Leu > Trp > Ala; S(4)', Asp > Glu > Trp. In general, S subsites are more specific than the S' subsites. A peptide comprising the eight most favored residues (Glu-Ile-Asp-Leu-Met-Val-Leu-Asp) was found to be hydrolyzed with the highest k(cat)/K(M) value so far observed for memapsin 2. Residue preferences at four subsites were also studied by binding of memapsin 2 to a combinatorial inhibitor library. From 10 tight binding inhibitors, the consensus preferences were as follows: S(2), Asp and Glu; S(3), Leu and Ile; S(2)', Val; and S(3)', Glu and Gln. An inhibitor, OM00-3, Glu-Leu-Asp-LeuAla-Val-Glu-Phe (where the asterisk represents the hydroxyethylene tansition-state isostere), designed from the consensus residues, was found to be the most potent inhibitor of memapsin 2 so far reported (K(i) of 3.1 x 10(-10) M). A molecular model of OM00-3 binding to memapsin 2 revealed critical improvement of the interactions between inhibitor side chains with enzyme over a previous inhibitor, OM99-2 [Ghosh, A. K., et al. (2000) J. Am. Chem. Soc. 14, 3522-3523].

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Alzheimer Disease / metabolism
  • Amino Acid Sequence
  • Amyloid Precursor Protein Secretases
  • Amyloid beta-Protein Precursor / metabolism
  • Aspartic Acid Endopeptidases / chemistry*
  • Aspartic Acid Endopeptidases / metabolism*
  • Binding Sites
  • Drug Design
  • Endopeptidases
  • Humans
  • Hydrolysis
  • Kinetics
  • Models, Molecular
  • Oligopeptides / chemistry
  • Oligopeptides / metabolism
  • Oligopeptides / pharmacology*
  • Peptide Library
  • Protease Inhibitors / chemistry*
  • Protease Inhibitors / pharmacology*
  • Protein Conformation
  • Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization

Substances

  • Amyloid beta-Protein Precursor
  • Oligopeptides
  • Peptide Library
  • Protease Inhibitors
  • Amyloid Precursor Protein Secretases
  • Endopeptidases
  • Aspartic Acid Endopeptidases
  • BACE2 protein, human
  • BACE1 protein, human