The aim of the present study was to examine the mechanisms of Ca2+ overload-induced contractile dysfunction in rat hearts independent of ischemia and acidosis. Experiments were performed on 30 excised cross-circulated rat heart preparations. After hearts were exposed to high Ca2+, there was a contractile failure associated with a parallel downward shift of the linear relation between myocardial O(2) consumption per beat and systolic pressure-volume area (index of a total mechanical energy per beat) in left ventricles from all seven hearts that underwent the protocol. This result suggested a decrease in O(2) consumption for total Ca2+ handling in excitation-contraction coupling. In the hearts that underwent the high Ca2+ protocol and had contractile failure, we found marked proteolysis of a cytoskeleton protein, alpha-fodrin, whereas other proteins were unaffected. A calpain inhibitor suppressed the contractile failure by high Ca2+, the decrease in O(2) consumption for total Ca2+ handling, and membrane alpha-fodrin degradation. We conclude that the exposure to high Ca2+ may induce contractile dysfunction possibly by suppressing total Ca2+ handling in excitation-contraction coupling and degradation of membrane alpha-fodrin via activation of calpain.