Fibrodysplasia ossificans progressiva (FOP) is a catastrophic genetic disorder of progressive heterotopic ossification associated with dysregulated production of bone morphogenetic protein 4 (BMP4), a potent osteogenic morphogen. Postnatal heterotopic ossification in FOP is often heralded by hectic episodes of severe post-traumatic connective tissue swelling and intramuscular edema, followed by an intense and highly angiogenic fibroproliferative mass. The abrupt appearance, intense size, and rapid intrafascial spread of the edematous preosseous fibroproliferative lesions implicate a dysregulated wound response mechanism and suggest that cells and mediators involved in inflammation and tissue repair may be conscripted in the growth and progression of FOP lesions. The central and coordinate role of inflammatory mast cells and their mediators in tissue edema, wound repair, fibrogenesis, angiogenesis, and tumor invasion prompted us to investigate the potential involvement of mast cells in the pathology of FOP lesions. We show that inflammatory mast cells are present at every stage of the development of FOP lesions and are most pronounced at the highly vascular fibroproliferative stage. Mast cell density at the periphery of FOP lesional tissue is 40- to 150-fold greater than in normal control skeletal muscle or in uninvolved skeletal muscle from FOP patients and 10- to 40-fold greater than in any other inflammatory myopathy examined. These findings document mobilization and activation of inflammatory mast cells in the pathology of FOP lesions and provide a novel and previously unrecognized target for pharmacologic intervention in this extremely disabling disease.