1. To further explore the effect of antioxidants in preventing diabetes-induced vascular and neural dysfunction we treated streptozotocin-induced diabetic rats daily with subcutaneous injections of 10 mg kg(-1) of M40403 (n=11) and compared the results obtained from 17 control rats and 14 untreated diabetic rats. M40403 is a manganese(II) complex with a bis(cyclo-hexylpyridine)-substituted macrocyclic ligand that was designed to be a selective functional mimetic of superoxide dismutase. Thus, M40403 provides a useful tool to evaluate the roles of superoxide in disease states. 2. Treatment with M40403 significantly improved diabetes-induced decrease in endoneurial blood flow, acetylcholine-mediated vascular relaxation in arterioles that provide circulation to the region of the sciatic nerve, and motor nerve conduction velocity (P<0.05). M40403 treatment also reduced the appearance of superoxide in the aorta and epineurial vessels and peroxynitrite in epineurial vessels. Treating diabetic rats with M40403 reduced the diabetes-induced increase in thiobarbituric acid reactive substances in serum but did not prevent the decrease in lens glutathione level. Treating diabetic rats with M40403 did not improve sciatic nerve Na(+)/K(+) ATPase activity or the sorbitol, fructose or myo-inositol content of the sciatic nerve. 3. These studies provide additional evidence that diabetes-induced oxidative stress and the generation of superoxide and perhaps peroxynitrite may be partially responsible for the development of diabetic vascular and neural complications.