Cytoskeletal proteins are important in protein trafficking, membrane protein clustering, dendrite growth and the morphological maintenance of neurons. Sigma(1) receptors are unique endoplasmic reticular (ER) proteins that bind (+)benzomorphans, neurosteroids and psychotropic drugs such as cocaine. Cocaine, via sigma(1) receptors, can cause the dissociation of a cytoskeletal adaptor protein ankyrin from inositol (1,4,5)-trisphosphate [Ins(1,4,5)P(3)] receptors on the ER as a sigma(1)-receptor-ankyrin complex, which then translocates to the plasma membrane and nucleus. The dissociation of sigma(1)-receptor-ankyrin from Ins(1,4,5)P(3) receptors also increases the intracellular Ca(2+) concentration [[Ca(2+)](i)], which affects the activity of cytoskeletal proteins. Furthermore, cocaine might increase [Ca(2+)](i) via phospholipase C (PLC)-linked dopamine D1 receptors. We hypothesize that cocaine might cause life-long changes in neurons via cytoskeletal proteins by interacting with both D1 receptors and sigma(1) receptors.