Osteoarthritis and osteoporosis are the two most common age-related chronic disorders of articular joints and skeleton, representing a major public health problem in most developed countries. Apart from being influenced by environmental factors, both disorders have a strong genetic component, and there is now considerable evidence from large population studies that these two disorders are inversely related. Thus, an accurate analysis of the genetic component of one of these two multifactorial diseases may provide data of interest for the other. However, the existence of confounding factors must always be borne in mind in interpreting the genetic analysis. In addition, each patient must be given an accurate clinical evaluation, including family history, history of drug treatments, lifestyle, and environment, in order to reduce the background bias. Here, we review the impact of recent work in molecular genetics suggesting that powerful molecular biology techniques will soon make possible both a rapid accumulation of data on the genetics of both disorders and the development of novel diagnostic, prognostic, and therapeutic approaches.