Most of the current brain imaging methods are limited by the low spatial resolution of neuroimaging techniques and remain unable to measure activity at the scale of single neurons or small columns of neurons, which are the coding elements of the nervous system. In this work we have adapted the priming method, an emerging research strategy that can overcome some of these spatial limitations, to investigate the coding of numerical quantities in the human brain. This approach combines the logic of psychological priming experiments with the recently discovered neurophysiological phenomenon called repetition suppression (RS). In each trial, while subjects perform a constant task, a subliminal prime is presented prior to each target. By varying the relationship between prime and target, one can detect which brain areas present RS specifically for any given level of prime-target repetition. We first expose the general logic, potential and limitations of the priming method and then illustrate it by demonstrating that a region of parietal cortex is coding for numbers at the quantity level, independently of other stimulus attributes, and that this region processes both consciously and unconsciously perceived stimuli.