Arabinogalactan-proteins (AGPs) are a family of complex proteoglycans found in all higher plants. Although the precise function(s) of any single AGP is unknown, they are implicated in diverse developmental roles such as differentiation, cell-cell recognition, embryogenesis and programmed cell death. DNA sequencing projects have made possible the identification of the genes encoding a large number of putative AGP protein backbones. In contrast, our understanding of how AGPs undergo extensive post-translational modification is poor and it is important to understand these processes since they are likely to be critical for AGP function. Genes believed to be responsible for post-translational modification of an AGP protein backbone, include prolyl hydroxylases, glycosyl transferases, proteases and glycosylphosphatidylinositol-anchor synthesising enzymes. Here we examine models for proteoglycan function in animals and yeast to highlight possible strategies for determining the function(s) of individual AGPs in plants.