The effect of CP55,940, a presumed CB1/CB2 cannabinoid receptor agonist, on intracellular free Ca2+ levels ([Ca2+]i) in Madin-Darby canine kidney cells was examined by using the fluorescent dye fura-2 as a Ca2+ indicator. CP55,940 (2-50 microM) increased [Ca2+]i concentration-dependently with an EC50 of 8 microM. The [Ca2+]i signal comprised an initial rise and a sustained phase. Extracellular Ca2+ removal decreased the maximum [Ca2+]i signals by 32+/-12%. CP55,940 (20 microM)-induced [Ca2+]i signal was not altered by 5 microM of two cannabinoid receptor antagonists, AM-251 and AM-281. CP55,940 (20 microM)-induced [Ca2+]i increase in Ca2+-free medium was inhibited by 86+/-3% by pretreatment with 1 microM thapsigargin, an endoplasmic reticulum Ca2+ pump inhibitor. Conversely, pretreatment with 20 microM CP55,940 in Ca2+-free medium for 6 min abolished thapsigargin-induced [Ca2+]i increases. CP55,940 (20 microM)-induced intracellular Ca2+ release was not inhibited when inositol 1,4,5-trisphosphate formation was abolished by suppressing phospholipase C with 2 microM U73122. Collectively, this study shows that CP,55940 induced significant [Ca2+]i increases in canine renal tubular cells by releasing stored Ca2+ from the thapsigargin-sensitive pools in an inositol 1,4,5-trisphosphate-independent manner, and also by causing extracellular Ca2+ entry. The CP55,940's action appears to be dissociated from stimulation of cannabinoid receptors.