Objectives: To characterize the natural history and possible mechanisms of hearing loss in Stickler syndrome (OMIM 108300; or hereditary progressive arthro-ophthalmopathy) and to determine if the auditory phenotype is a useful discriminating feature for the differential diagnosis of this group of disorders.
Design: Multifamily study.
Setting: Outpatient audiology and otolaryngology clinics at the Warren Grant Magnuson Clinical Center of the National Institutes of Health, Rockville, Md.
Subjects: Forty-six affected individuals from 29 different families segregating Stickler syndrome.
Interventions: Clinical audiologic and otolaryngological examinations were performed on all individuals, including pure-tone audiometry, speech audiometry, and middle ear immittance testing. Otoacoustic emissions, auditory brainstem response, infrared video electronystagmography, and temporal bone computed tomography were performed on a subset of participants.
Results: The hearing loss was most often sensorineural in adults, and approximately 28 (60%) of the 46 adult patients had 2 or more thresholds greater than the corresponding 95th percentile values for an age-matched, otologically normal population. The hearing loss most often affected high frequencies (4000-8000 Hz) and was generally no more progressive than that due to age-related hearing loss. Type A(D) tympanograms (classification using the Jerger model), indicating hypermobile middle ear systems, were observed in 21 (46%) of the 46 affected individuals. Computed tomography of the temporal bones revealed no inner ear malformations in 19 affected individuals.
Conclusions: The hypermobile middle ear systems observed in ears with normal-appearing tympanic membranes represent a novel finding for Stickler syndrome and are likely to be a useful diagnostic feature for this disorder. The overall sensorineural hearing loss in type I Stickler syndrome is typically mild and not significantly progressive. It is less severe than that reported for types II and III Stickler syndrome linked to COL11A2 (OMIM 120290) and COL11A1 (OMIM 120280) mutations, respectively, or the closely related Marshall syndrome. This difference will be a useful discriminatory feature in the differential diagnosis of this group of disorders.