Mutations in the human tau gene cause frontotemporal dementia and Parkinsonism associated with chromosome 17 (FTDP-17). One of the major disease mechanisms in FTDP-17 is the increased inclusion of tau exon 10 during pre-mRNA splicing. Here we show that modified oligonucleotides directed against the tau exon 10 splice junctions suppress inclusion of tau exon 10. The effect is mediated by the formation of a stable pre-mRNA-oligonucleotide hybrid, which blocks access of the splicing machinery to the pre-mRNA. Correction of tau splicing occurs in a tau minigene system and in endogenous tau RNA in neuronal pheochromocytoma cells and is specific to exon 10 of the tau gene. Antisense oligonucleotide-mediated exclusion of exon 10 has a physiological effect by increasing the ratio of protein lacking the microtubule-binding domain encoded by exon 10. As a consequence, the microtubule cytoskeleton becomes destabilized and cell morphology is altered. Our results demonstrate that alternative splicing defects of tau as found in FTDP-17 patients can be corrected by application of antisense oligonucleotides. These findings provide a tool to study specific tau isoforms in vivo and might lead to a novel therapeutic strategy for FTDP-17.