Hydrogen sensors and hydrogen-activated switches were fabricated from arrays of mesoscopic palladium wires. These palladium "mesowire" arrays were prepared by electrodeposition onto graphite surfaces and were transferred onto a cyanoacrylate film. Exposure to hydrogen gas caused a rapid (less than 75 milliseconds) reversible decrease in the resistance of the array that correlated with the hydrogen concentration over a range from 2 to 10%. The sensor response appears to involve the closing of nanoscopic gaps or "break junctions" in wires caused by the dilation of palladium grains undergoing hydrogen absorption. Wire arrays in which all wires possessed nanoscopic gaps reverted to open circuits in the absence of hydrogen gas.