Background: Boron neutron-capture therapy (BNCT) is a drug-targeted binary radiotherapy for cancer. The (10)B capture of thermal neutrons induces secondary radiation within cells during irradiation. The most widely used boron carrier is 4-dihydroxyborylphenylalanine (BPA). The duration and timing of the irradiation is adjusted by monitoring (10)B concentrations in whole blood.
Methods: We developed a new method for boron determination that uses inductively coupled plasma atomic emission spectrometry (ICP-AES) and protein removal with trichloroacetic acid before analysis. This method was compared with the established but tedious inductively coupled plasma mass spectrometry (ICP-MS), which uses wet ashing as sample pretreatment. Erythrocyte boron concentrations were determined indirectly on the basis of plasma and whole blood boron concentrations and the hematocrit. The hematocrit was determined indirectly by measuring calcium concentrations in plasma and whole blood.
Results: Within- and between-day CVs were <5%. The recoveries for boron in whole blood were 95.6-96.2%. A strong correlation was found between results of the ICP-AES and ICP-MS (r = 0.994). Marked differences in plasma and erythrocyte boron concentrations were observed during and after infusion of BPA fructose complex.
Conclusions: The present method is feasible, accurate, and one of the fastest for boron determination during BNCT. Our results indicate that it is preferable to determine boron in plasma and in whole blood. Indirect erythrocyte-boron determination thus becomes possible and avoids the impact of preanalytical confounding factors, such as the influence of the hematocrit of the patient. Such an approach enables a more reliable estimation of the irradiation dose.