Glucose has long been considered the substrate for neuronal energy metabolism in the brain. Recently, an alternative explanation of energy metabolism in the active brain, the astrocyte-neuron lactate shuttle hypothesis, has received attention. It suggests that during neural activity energy needs in glia are met by anaerobic glycolysis, whereas neuronal metabolism is fueled by lactate released from glia. In this article, we critically examine the evidence supporting this hypothesis and explain, from the perspective of enzyme kinetics and substrate availability, why neurons probably use ambient glucose, and not glial-derived lactate, as the major substrate during activity.