Photodynamic therapy (PDT) is a cancer treatment modality that is based on the administration of a photosensitiser, which is retained in tumour tissues more than in normal tissues, followed by illumination of the tumour with visible light in a wavelength range matching the absorption spectrum of the photosensitiser. The photosensitiser absorbs light energy and induces the production of reactive oxygen species in the tumour environment, generating a cascade of events that kills the tumour cells. The first generation photosensitiser, Photofrin (porfirmer sodium), has been approved for oesophageal and lung cancer in the US and has been under investigation for other malignant and non-malignant diseases. Sub-optimal light penetration at the treatment absorption peak of Photofrin and prolonged skin photosensitivity in patients are limiting factors for this preparation. Several new photosensitisers have improved properties, especially absorption of longer wavelength light which penetrates deeper into tissue and faster clearance from normal tissue. This paper reviews the current use of first- and second-generation photosensitisers in oncology. The use of PDT in oncology has been restricted to certain cancer indications and has not yet become an integral part of cancer treatment in general. The main advantage of PDT is that the treatment can be repeated multiple times safely, without producing immunosuppressive and myelosuppressive effects and can be administered even after surgery, chemotherapy or radiotherapy. The current work on new photosensitisers and light delivery equipment will address some of the present shortcomings of PDT. Much has been learned in recent years about the mechanisms of cellular and tissue responses to PDT and protocols designed to capitalise on this knowledge showed lead to additional improvements.