Inhibition of focal adhesion kinase expression or activity disrupts epidermal growth factor-stimulated signaling promoting the migration of invasive human carcinoma cells

Cancer Res. 2001 Oct 1;61(19):7079-90.

Abstract

Elevated focal adhesion kinase (FAK) expression in human tumor cells has been correlated with an increased cell invasion potential. In cell culture, studies with FAK-null fibroblasts have shown that FAK function is required for cell migration. To determine the role of elevated FAK expression in facilitating epidermal growth factor (EGF)-stimulated human adenocarcinoma (A549) cell motility, antisense oligonucleotides were used to reduce FAK protein expression >75%. Treatment of A549 cells with FAK antisense (ISIS 15421) but not a mismatched control (ISIS 17636) oligonucleotide resulted in reduced EGF-stimulated p130(Cas)-Src complex formation, c-Jun NH(2)-terminal kinase (JNK) activation, directed cell motility, and serum-stimulated cell invasion through Matrigel. Because residual FAK protein in ISIS 15421-treated A549 cells was highly phosphorylated at the Tyr-397/Src homology (SH)2 binding site, expression of the FAK COOH-terminal domain (FRNK) was also used as an inhibitor of FAK function. Adenoviral-mediated infection and expression of FRNK promoted FAK dephosphorylation at Tyr-397, resulted in reduced EGF-stimulated JNK as well as extracellular-regulated kinase 2 (ERK2) kinase activation, inhibited matrix metalloproteinase-9 (MMP-9) secretion, and potently blocked both random and EGF-stimulated A549 cell motility. Equivalent expression of a FRNK (S-1034) point-mutant that did not promote FAK dephosphorylation also did not affect EGF-stimulated signaling or cell motility. Dose-dependent reduction in EGF-stimulated A549 motility was observed with the PD98059 MEK1 inhibitor and the batimastat (BB-94) inhibitor of MMP activity, but not with the SB203580 inhibitor of p38 kinase. Finally, comparisons between normal, FAK-null, and FAK-reconstituted fibroblasts revealed that FAK enhanced EGF-stimulated JNK and ERK2 kinase activation that was required for cell motility. These data indicate that FAK functions as an important signaling platform to coordinate EGF-stimulated cell migration in human tumor cells and support a role for inhibitors of FAK expression or activity in the control of neoplastic cell invasion.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenocarcinoma / enzymology*
  • Adenocarcinoma / pathology
  • Cell Movement / drug effects
  • Cell Movement / physiology*
  • Enzyme Activation
  • Epidermal Growth Factor / antagonists & inhibitors*
  • Epidermal Growth Factor / pharmacology
  • Focal Adhesion Kinase 1
  • Focal Adhesion Protein-Tyrosine Kinases
  • Humans
  • MAP Kinase Signaling System / drug effects
  • MAP Kinase Signaling System / physiology
  • Matrix Metalloproteinase 9 / metabolism
  • Matrix Metalloproteinase Inhibitors
  • Mitogen-Activated Protein Kinases / metabolism
  • Neoplasm Invasiveness
  • Oligonucleotides, Antisense / genetics
  • Oligonucleotides, Antisense / pharmacology
  • Phosphorylation
  • Protein-Tyrosine Kinases / antagonists & inhibitors*
  • Protein-Tyrosine Kinases / biosynthesis
  • Protein-Tyrosine Kinases / genetics
  • Protein-Tyrosine Kinases / physiology
  • Tumor Cells, Cultured

Substances

  • Matrix Metalloproteinase Inhibitors
  • Oligonucleotides, Antisense
  • Epidermal Growth Factor
  • FAK-related nonkinase
  • Protein-Tyrosine Kinases
  • Focal Adhesion Kinase 1
  • Focal Adhesion Protein-Tyrosine Kinases
  • PTK2 protein, human
  • Mitogen-Activated Protein Kinases
  • Matrix Metalloproteinase 9