Diadenosine pentaphosphate (Ap5A) and adenosine 5'-triphosphate (ATP) stimulate a intrasynaptosomal calcium concentration [Ca(2+)](i) increase via specific purinergic receptors in rat midbrain synaptosomes, although nothing is known about their distribution in presynaptic terminals. A microfluorimetric technique to measure [Ca(2+)](i) increase using the dye FURA-2AM, has permitted study of the presence of dinucleotide and P2X receptors in independent isolated synaptic terminals. Our results demonstrate the existence of three populations of synaptosomes: one with dinucleotide receptors (12%), another with P2X receptors (20%) and a third with both (14%). It has been possible to demonstrate that the activation of these receptors occurs only in the presence of extracellular Ca(2+) and that it is also coupled with voltage-dependent Ca(2+) channels. Finally 54% of the synaptosomes that responded to K(+) did not present any calcium increase mediated by the nucleotides used. In summary, ATP and dinucleotides exhibit specific ionotropic receptors that can coexist or not on the same synaptic terminal.