Infection with gram-positive bacteria is a major cause of pneumonia. Surfactant proteins A (SP-A) and D (SP-D) are thought to play an important role in the innate immunity of the lung. Both proteins can bind to gram-positive bacteria. Until now, it was not known with which surface component(s) of gram-positive bacteria SP-A and SP-D interact. Lipoteichoic acid (LTA) and peptidoglycan (PepG) are components of the cell wall of gram-positive bacteria. By use of a solid phase-based binding assay, LTA of Bacillus subtilis was shown to be bound by SP-D but not by SP-A. Unmodified PepG of Staphylococcus aureus was bound by SP-D. SP-D binding to both LTA and PepG was calcium dependent and carbohydrate inhibitable. These results indicate that SP-D interacts with gram-positive bacteria via binding to the cell wall components LTA and PepG and that the carbohydrate recognition domain is responsible for this binding.