Characterization of surfactant coatings in capillary electrophoresis by atomic force microscopy

Anal Chem. 2001 Oct 1;73(19):4558-65. doi: 10.1021/ac0105134.

Abstract

This paper describes the adsorption mechanisms and aggregation properties of cetyltrimethylammonium bromide (CTAB) and didodecyldimethylammonium bromide (DDAB) surfactants that are used for dynamic coatings in capillary electrophoresis (CE). Atomic force microscopy is used to directly visualize surfactant adsorption on fused silica. It was found that the single-chained surfactant CTAB forms spherical aggregates on silica while the double-chained surfactant DDAB forms a bilayer. Aggregation at the surface occurs at approximately the same surfactant concentration in which EOF reversal is observed in CE. The nearest-neighbor distance between CTAB aggregates varies inversely with buffer pH and becomes constant at the point when the silanol groups are fully ionized. DDAB forms a flat, uniform coating independent of pH. Increasing the buffer ionic strength changes the morphology of the CTAB aggregates from spherical to cylindrical. The change in morphology can alter the surface coverage, which is related to the "normalized" EOF measured in identical buffers. The morphology of a surfactant coating is also shown to affect its ability to inhibit protein adsorption to the capillary wall. Specifically, the full surface coverage provided by DDAB proved superior in a head-to-head comparison with CTAB.