Physical association of proteins that underlies cytotoxic signal induction and transduction suggests a possibility of regulating cell response by modifying protein-protein interactions. For protein complexing, chemical cross-linking agents have been traditionally used. However, the ability of various cross-linkers to induce and modify cell responses, cell death in particular, is still obscure. We have undertaken the investigation to test the apoptosis-inducing and modifying properties of the homobifunctional cross-linkers-dimethyl suberimidate (DMS) and 1,5-bis(succinimido-oxycarbonyloxy)pentane (BSOCOP). The functional groups of these cross-linkers are different but both are able to interact with available amino groups. It was shown that bifunctional cross-linkers, unlike their monofunctional analogues, are capable of inducing cell death in transformed cells, thus indicating the crucial role of cross-linking in cell killing. DMS- and BSOCOP-treated cells were shown to undergo cell death by apoptosis, though the signaling pathways were distinct. DMS inhibited bcl-X(L) and bak but not bax gene expression, while BSOCOP potentiated bax mRNA synthesis immediately after application. Cell pre-incubation with DMS, but not with BSOCOP, resulted in an increasing sensitivity to TNF, although activities of anti-Fas cytotoxic antibodies were then inhibited. Thus, this study has demonstrated for the first time that chemical cross-linkers are capable of inducing apoptosis by themselves and modifying the TNF-dependent and Fas-mediated cell death that may have potential therapeutic significance.