White adipose tissue plays an integral role in energy metabolism and is governed by endocrine, autocrine, and neural signals. Neural control of adipose metabolism is mediated by sympathetic neurons that innervate the tissue. To investigate the effects of this innervation, an ex vivo system was developed in which 3T3-L1 adipocytes are cocultured with sympathetic neurons isolated from the superior cervical ganglia of newborn rats. In coculture, both adipocytes and neurons exhibit appropriate morphology, express cell-type-specific markers, and modulate key metabolic processes in one another. Lipolysis (stimulated by beta-adrenergic agents) and leptin secretion by adipocytes are down-regulated by neurons in coculture, effects apparently mediated by neuropeptide Y (NPY). Secretion of NPY by neurons is up-regulated dramatically by the presence of adipocytes in coculture and appears to be mediated by an adipocyte-derived soluble factor. Insulin, an antilipolytic agent, down-regulates NPY secretion. Our findings suggest that an adipocyte-derived factor(s) up-regulates the secretion of NPY by sympathetic neurons, which, in turn, attenuates lipolytic energy mobilization by adipocytes.