In the presence of carboxylic acids, the adduct formed between triphenylphosphine and diisopropyl azodicarboxylate reacts to form mono- and bis-acylated hydrazides and the carboxylic acid anhydrides. These products are formed via attack of the carboxylate on the triphenylphosphonium group of the adduct, with weaker acids reacting much faster than stronger acids. This provides an explanation for the observation in the literature that acids stronger than acetic acid, such as 4-nitrobenzoic acid and chloroacetic acid, provide better yields in esterification reactions, since reaction of the alcohol with the phosphonium group of the adduct is more rapid than the competing reaction of the carboxylate for the phosphonium group.