Thermodynamic studies of the binding of a series of p-nitrophenyl glycosides (PNPGly) of varying stereochemistry to alpha-cyclodextrin (alpha-CD) were performed at three different temperatures (25, 35, and 42 degrees C) using a microcalorimetric technique. The system p-nitrophenol (PNP) at pH = 3 and alpha-CD was also studied for the sake of comparison. All these complexes were found to be enthalpy driven with a favorable enthalpic term clearly dominant over an unfavorable entropic term. A clear enthalpy-entropy compensation effect was observed at all the temperatures, with a slope close to unity (alpha = 1.02) and an intercept TDeltaS degrees (o) = 2.91 kcal mol(-)(1). This thermodynamic pattern is in agreement with those usually found for lectin-carbohydrate associations and for the binding processes of several host-guest systems. This pattern is explained in terms of the contribution of primarily two driving forces: the van der Waals interactions between the host and the guest, and the solvation/desolvation processes which accompany the association reaction. The presence of the carbohydrate molecule in the PNP ring causes a slight destabilization of the complex at 25 degrees C with respect to the alpha-CD-PNP (pH = 3) complex, although a different behavior has been observed depending on the axial/equatorial configuration of the glycoside and the temperature. This behavior is modulated by the stereochemistry of the glycoside. Differences were observed between the deoxy-derivatives (LAra and LFuc) and those derivatives with a hydroxymethyl group (Glc, Gal, Man). DeltaC(p) degrees values were obtained from the dependency of DeltaH degrees on temperature (=( partial differentialDeltaH degrees / partial differentialT)(p)). These values are small and negative except for alphaMan complex. For the latter complex, discrepancy between the calorimetric and the calculated van't Hoff enthalpies was observed. Parallels are drawn between the thermodynamics of our model and those proposed for carbohydrate-protein associations.