Mechanism of the Topotactic Formation of gamma-Zirconium Phosphate Covalently Pillared with Diphosphonate Groups

Inorg Chem. 1998 Sep 7;37(18):4672-4676. doi: 10.1021/ic980400b.

Abstract

The topotactic reaction of gamma-ZrPO(4)[O(2)P(OH)(2)].2H(2)O (gamma-ZrP) with benzenediphosphonic acid was examined in water and in acetone-water mixtures. This reaction was found to take place in water only on the external surface of the microcrystals, and pillared compounds were never obtained, even after very long reaction times. On the contrary, covalently pillared compounds were quickly obtained in acetone-water mixtures. The mechanism of the latter topotactic reaction was investigated by determining the rate of the phosphate groups released and the rate of the benzenediphosphonates taken up by gamma-ZrP over a long time (50 days). These data showed that pillared derivatives of gamma-ZrP can be obtained because colloidal dispersions of exfoliated lamellae are formed in acetone-water mixtures. The diphosphonate group acts initially as a monovalent species, replacing only one dihydrogen phosphate group on the surface of the exfoliated gamma-lamellae. The colloidal and partially derivatized lamellae thus formed can interact with each other by forming polylamellar pillared systems. When the number of pillared lamellae exceeds a given value (usually 5-6), flocculation of the colloidal gamma-ZrP takes place. Topotactic reactions between packets of pillared lamellae may also continue in the flocculated system. Therefore, the average number of the pillared lamellae slowly increases over time.