The pediatric tumor neuroblastoma is characterized by a very variable, and at times unpredictable, pattern of clinical behavior, ranging from a benign localized tumor to an aggressive malignancy with poor prognosis. Standard clinical and pathological assessments do not always differentiate reliably between tumor subtypes and, therefore, genetic markers are now playing an increasingly important role in treatment decisions. MYCN oncogene amplification, for example, provides a useful marker of poor prognosis. However, less than one-half of all patients who present with, or who later develop, metastatic disease show MYCN amplification. Consequently, the identification of characteristic patterns of genetic alteration in the remaining tumors is of importance. In this report, we describe two new cell lines that we have established from metastatic, non-MYCN amplified, advanced stage neuroblastomas. These cell lines show a number of features in common, including unbalanced translocation between 11q and 17q, loss of 3p, 4p and 11q and gain of 17q. Therefore, they provide a valuable resource for the characterization of genetic pathways leading to aggressive tumor growth in non-MYCN amplified neuroblastomas.