To investigate whether postischemic cerebral dysfunction occurs via the interleukin-1 beta/nitric oxide (IL-1beta/NO) pathway, we examined the effects of an IL-1beta antagonist on long-term potentiation (LTP) impairment and excessive NO production in the rat hippocampus after 10-min global ischemia. Intracerebroventricilar administration of the IL-1beta antagonist attenuated NO production and rescued LTP impairment in the perforant path-dentate gyrus synapses, observed 1 day and 4 days after ischemic insult, respectively. There was an inverse relationship between LTP in the dentate gyrus synapses and hippocampal NO production. Centrally applied IL-1beta mimicked the consequences of transient ischemia in LTP formation and hippocampal NO production in non-ischemic rats. These findings indicate that the IL-1beta/NO pathway is involved in the hippocampal LTP impairment observed in the postischemic brain.