Background: In patients with acute respiratory distress syndrome, whether inverse ratio ventilation differs from high positive end-expiratory pressure (PEEP) for gas exchange under a similar mean airway pressure has not been adequately examined. The authors used arterial oxygenation, gastric intramucosal partial pressure of carbon dioxide (PiCO(2)), and pH (pHi) to assess whether pressure-controlled inverse ratio ventilation (PC-IRV) offers more benefits than pressure-controlled ventilation (PCV) with PEEP.
Methods: Seventeen acute respiratory distress syndrome patients were enrolled and underwent mechanical ventilation with a PCV inspiratory-to-expiratory ratio of 1:2, followed by PC-IRV 1:1 initially. Then, they were randomly assigned to receive PC-IRV 2:1, then 4:1 or 4:1, and then 2:1, alternately. The baseline setting of PCV 1:2 was repeated between the settings of PC-IRV 2:1 and 4:1. Mean airway pressure and tidal volume were kept constant by adjusting the levels of peak inspiratory pressure and applied PEEP. In each ventilatory mode, hemodynamics, pulmonary mechanics, arterial and mixed venous blood gas analysis, PiCO(2), and pHi were measured after a 1-h period of stabilization.
Results: With a constant mean airway pressure, PC-IRV 2:1 and 4:1 decreased arterial and mixed venous oxygenation as compared with baseline PCV 1:2. Neither the global oxygenation indices with oxygen delivery and uptake nor PiCO(2) and pHi were improved by PC-IRV. During PC-IRV, applied PEEP was lower, and auto-PEEP was higher.
Conclusion: When substituting inverse ratio ventilation for applied PEEP to keep mean airway pressure constant, PC-IRV does not contribute more to better gas exchange and gastric intramucosal PiCO(2) and pHi than does PCV 1:2 for acute respiratory distress syndrome patients, regardless of the inspiratory-to-expiratory ratios.