The kinetic properties of a gill Na(+), K(+)-ATPase from the freshwater shrimp Macrobrachium olfersii were studied using p-nitrophenylphosphate (PNPP) as a substrate. Sucrose gradient centrifugation of the microsomal fraction revealed a single protein fraction that hydrolyzed PNPP. The Na(+), K(+)-ATPase hydrolyzed PNPP (K(+)-phosphatase activity) obeying Michaelis-Menten kinetics with K(M)=1.72+/-0.06 mmol l(-1) and V(max)=259.1+/-11.6 U mg(-1). ATP was a competitive inhibitor of K(+)-phosphatase activity with a K(i)=50.1+/-2.5 micromol l(-1). A cooperative effect for the stimulation of the enzyme by potassium (K(0.5)=3.62+/-0.18 mmol l(-1); n(H)=1.5) and magnesium ions (K(0.5)=0.61+/-0.02 mmol l(-1), n(H)=1.3) was found. Sodium ions had no effect on K(+)-phosphatase activity up to 1.0 mmol l(-1), but above 80 mmol l(-1) inhibited the original activity by approximately 75%. In the range of 0-10 mmol l(-1), sodium ions did not affect stimulation of the K(+)-phosphatase activity by potassium ions. Ouabain (K(i)=762.4+/-26.7 micromol l(-1)) and orthovanadate (K(i)=0.25+/-0.01 micromol l(-1)) completely inhibited the K(+)-phosphatase activity, while thapsigargin, oligomycin, sodium azide and bafilomycin were without effect. These data demonstrate that the activity measured corresponds to that of the K(+)-phosphatase activity of the Na(+), K(+)-ATPase alone and suggest that the use of PNPP as a substrate to characterize K(+)-phosphatase activity may be a useful technique in comparative osmoregulatory studies of Na(+), K(+)-ATPase activities in crustacean gill tissues, and for consistent comparisons with well known mechanistic properties of the vertebrate enzyme.