The use of allogeneic and autologous lymphoid cell lines has facilitated studies of cytotoxic T lymphocytes (CTL) and natural killer (NK)-like cells in channel catfish. Naïve catfish leukocytes were shown to spontaneously kill allogeneic cells and virally-infected autologous cells without the need for prior sensitization, and allogeneic cytotoxic responses were greatly enhanced by in vitro alloantigen stimulation. Both catfish CTL and NK-like cells have been successfully cloned from these alloantigen-stimulated cultures, and represent the first cytotoxic cell lines derived from any ectothermic vertebrate. These cloned cytotoxic cells contain granules and likely induce apoptosis in sensitive targets via a putative perforin/granzyme mechanism. In addition, some catfish CTL clones may also kill targets by an additional mechanism, possibly by Fas/FasL-like interactions. Importantly, these cytotoxic cells do not express the marker for catfish nonspecific cytotoxic cells (NCCs), and thus represent cell types distinct from NCCs. The use of monoclonal antibodies against the catfish F and G immunoglobulin light chain isotypes revealed the presence of a putative Fc receptor for IgM (Fc mu R) on some catfish NK-like cells that appears to 'arm' these cells with surface IgM. In addition, a potentially important monoclonal antibody (CC41) developed against catfish NK-like cells was found to recognize an approximately 150kDa molecule on the surface of catfish cytotoxic cells. These studies clearly demonstrate that catfish possess an array of different cytotoxic cells. The availability of various cloned cytotoxic cell lines should enable unambiguous functional studies to be performed in ways not currently possible with any other fish species.