Hepatocytes and other cellular elements isolated by collagenase perfusion of the liver and maintained in defined culture conditions undergo a series of complex changes, including apoptosis and cell proliferation, to reconstruct tissue with specific architecture. Cultures in collagen-coated pleated surface roller bottles, with hepatocyte growth medium medium and in the presence of hepatocyte growth factor (HGF) and epidermal growth factor (EGF), form characteristic and reproducible tissue architecture composed of a superficial layer of biliary epithelial cells, an intermediate layer of connective tissue and hepatocytes, and a basal layer of endothelial cells. Dexamethasone, EGF, and HGF are required for the complete histological organization. Analysis of the structures formed demonstrates that the receptor tyrosine kinase ligands HGF and EGF are required for the presence, growth, and phenotypic maturation of the biliary epithelium on the surface of the cultures and for the formation of connective tissue in the cultures. Dexamethasone, in the presence of HGF and EGF, was required for the phenotypic maturation of hepatocytes. The results demonstrate the role of these molecules for the formation and phenotypic maturation of specific histological elements of the liver and suggest roles for these signaling molecules in the formation and structure of the in vivo hepatic architecture.