The repertoire of Kv1 potassium channels expressed in presynaptic terminals of mammalian central neurons is shaped by intrinsic trafficking signals that determine surface-expression efficiencies of homomeric and heteromeric Kv1 channel complexes. Here, we show that a determinant controlling surface expression of Kv1 channels is localized to the highly conserved pore region. Point-mutation analysis revealed two residues as critical for channel trafficking, one in the extracellular "turret" domain and one in the region distal to the selectivity filter. Interestingly, these same residues also form the binding sites for polypeptide neurotoxins. Our findings demonstrate a previously uncharacterized function for the channel-pore domain as a regulator of channel trafficking.