We investigated the morphological changes of horizontal cells after postnatal photoreceptor degeneration in the developing FVB/N mouse retina, using immunocytochemistry with anti-calbindin D-28K. From postnatal day 14 (P14) onwards, processes emerging from horizontal cells descend into the inner plexiform layer (IPL) and ramify mainly in stratum 1 of the IPL. Electron microscopy revealed that the descending processes make synaptic contacts with bipolar cells in the outer plexiform layer. Our results clearly demonstrate that loss of photoreceptor cells induces the reorganization of horizontal cell processes in the retinas of FVB/N mice as they mature.