There are no objective differences in neural elements that explain regional differences in neural influences along the smooth muscle (SM) esophageal body (EB). Regional differences in muscle properties are present in the lower esophageal sphincter (LES). This study examines whether regional differences in SM properties exist along the EB and are reflected in length-tension relationships and responses to cholinergic excitation. Circular SM strips from feline EB at 1 cm (EB1) and 3 cm (EB3) above LES and from clasp and sling muscle bundles of LES were assessed in normal and calcium-free solutions with and without bethanechol stimulation. Neural inhibition was assessed by electrical field stimulation (EFS). EB3 developed significantly higher tension in response to stretch and to bethanechol than did EB1. The relaxation response to EFS in bethanechol-precontracted strips was less in EB3 than in EB1. In LES, clasp developed higher resting tension than sling but less active tension in response to bethanechol. EFS-induced relaxations of sling and clasp tissues precontracted by bethanechol were not different. In calcium-free solution, length-tension differences between EB3 and EB1 persisted, but those of LES clasp and sling were abolished. Therefore, regional myogenic differences exist in feline EB circular SM as well as in LES and may contribute to the nature of esophageal contraction.