Monitoring of atrial signals improves the accuracy in identifying supraventricular tachyarrhythmias to prevent inappropriate therapies in patients with implantable ICDs. Since difficulties due to the additional atrial lead were found in dual chamber ICD systems with two leads, the authors designed a single pass VDD lead for use with dual chamber ICDs. After a successful animal study, the prototype VDD lead (single coil defibrillation lead with two additional fractally coated rings for bipolar sensing in the atrium) was temporarily used in 30 patients during a German multicenter study. Atrial and ventricular signals were recorded during sinus rhythm (SR), atrial flutter, AF, and VT or VF. The implantation of the lead was successful in 27 of 30 patients. Mean atrial pacing threshold was 2.5 +/- 0.9 V/0.5 ms, mean atrial impedance was 213 +/- 31 ohms. Atrial amplitudes were greater during SR (2.7 +/- 1.6 mV) than during atrial flutter (1.46 +/- 0.3 mV, P < 0.05) or AF (0.93 +/- 0.37 mV, P < 0.01). During VF atrial "sinus" signals had significantly (P < 0.01) lower amplitudes (1.4 +/- 0.52 mV) than during SR. The mean ventricular sensing was 13.3 +/- 7.9 mV and mean ventricular impedance was 577 +/- 64 ohms. Defibrillation was successful with a 20-J shock in all patients. In addition, 99.6% of P waves could be detected in SR and 84.4% of flutter waves during atrial flutter. During AF, 56.6% of atrial signals could be detected without modification of the signal amplifier. In conclusion, a new designed VDD dual chamber lead provides stable detection of atrial and ventricular signals during SR and atrial flutter. Reliable detection of atrial signals is possible without modification of the ICD amplifier.