Objective: To describe the epithelial healing rates observed in freshly cultured rabbit corneas chemically burned with high-concentration hydrochloric acid (HCl) and sodium hydroxide (NaOH) and subsequently treated with phototherapeutic keratectomy (PTK).
Methods: We obtained 126 fresh corneoscleral rims from cadaveric New Zealand white rabbits. Each cornea was exposed to 4-mm cellulose sponges soaked in a solution of topical 0.9% isotonic sodium chloride solution, 2M HCl, or 0.5M NaOH. A transepithelial PTK (6-mm zone; 100-microm ablation depth) was then performed using the excimer laser (150-mJ/cm(2) energy pulse; 20 nanosecond duration; and 10-Hz frequency). Corneas were placed in tissue culture, and 1 cornea from each group was taken out of culture each day after treatment. Re-epithelialization was monitored by means of fluorescein staining, slitlamp photography, and histopathological analysis.
Results: Corneas treated with HCl and NaOH exhibited immediate epithelial defects that slowly healed over time. In PTK-treated corneas, the re-epithelialization rate was accelerated compared with that of controls (P =.003 for the HCl group, and P<.001 for the NaOH group). The new epithelial layers were smoother in PTK-treated corneas, as confirmed by results of histopathological analysis.
Conclusion: Corneal damage caused by HCl and NaOH may be modulated in vitro by PTK in this rabbit model.
Clinical relevance: After corneal chemical damage, 193-nm excimer laser PTK accelerates epithelial wound healing.