Differential effects of doxorubicin on atrial natriuretic peptide expression in vivo and in vitro

Biol Res. 2001;34(3-4):195-206. doi: 10.4067/s0716-97602001000300007.

Abstract

Doxorubicin (Dox) is a potent anti-cancer agent with cardiotoxic side-effects but the mechanism of its cardiotoxicity and its effect on expression of the vasoactive atrial natriuretic peptide (ANP), an important marker for cardiac hypertrophy, are little understood. The present study examined Dox-induced changes in vivo in hearts of 6 mongrel dogs and 5 Sprague-Dawley rats and in vitro in cardiac cultures of neonatal rats. Quantitative RT-PCR analysis using gamma 32-p labeled primers for beta-actin, phospholamban (PLB) and ANP showed a selective 5-fold increase of ANP mRNA in Dox-treated dog hearts in comparison to controls. Similarly, northern analysis of GAPD, beta-actin, cardiac alpha-actin and ANP gave a selective 4.5-fold increase in ANP transcripts in Dox-treated rat hearts. On the other hand, there was a selective decrease (approximately 39%) of ANP transcripts in Dox-treated cardiac cultures relative to controls. Immunohistochemistry localized the ANP changes both in tissue sections and in cultures to the cardiomyocytes. The data clearly showed that Dox selectively increases ANP expression in dog and rat hearts in absence of cardiocyte hypertrophy but selectively decreases it in cardiac cultures. This differential effect of Dox on cardiocytes in vivo and in vitro should be a useful parameter for studies of transcriptional control of ANP expression.

MeSH terms

  • Animals
  • Antineoplastic Agents / pharmacology*
  • Atrial Natriuretic Factor / drug effects*
  • Atrial Natriuretic Factor / genetics
  • Blotting, Northern
  • Culture Techniques
  • Dogs
  • Doxorubicin / pharmacology*
  • Fluorescent Antibody Technique
  • Gene Expression / drug effects
  • Heart Atria / drug effects
  • Heart Diseases / chemically induced
  • Heart Diseases / physiopathology*
  • Immunohistochemistry
  • Male
  • Myocardium / ultrastructure
  • Rats
  • Rats, Sprague-Dawley
  • Reverse Transcriptase Polymerase Chain Reaction

Substances

  • Antineoplastic Agents
  • Doxorubicin
  • Atrial Natriuretic Factor