Introduction: Calpains, cytosolic Ca(2+)-dependent cysteine proteases, are expressed in a variety of mammalian cells and have been found to participate in stimulus-secretion coupling in platelets and alveolar cells.
Aims: In pancreatic acinar cells, expression of calpains and their role in the secretory process have not yet been elucidated. Both subjects, therefore, were examined in the current study.
Methodology: mu-calpain and m-calpain were detected immunochemically. Calpain activation was measured by fluorescence spectrophotometry and single-cell fluorometry using Suc-Leu-Leu-Val-Tyr-AMC as substrate. Amylase secretion and cell damage, characterized by lactate dehydrogenase release, were measured by colorimetric assays.
Results: Immunochemistry revealed cytoplasmic localization of both calpain isoforms. Immediately after increasing the cytosolic Ca(2+) concentration with ionomycin, a marked dose-dependent protease activation and cellular damage were observed. Inhibition of ionomycin-mediated enzyme activation through preincubation of cells with Ca(2+)-free medium, BAPTA-AM, or Z-Leu-Leu-Tyr-CHN(2) significantly reduced cell injury. Cholecystokinin (100 pM) also induced proteolytic activity, preceding cholecystokinin-stimulated amylase secretion. Protease activity and amylase release were significantly inhibited by Z-Leu-Leu-Tyr-CHN(2 ) retreatment.
Conclusion: Calpains are expressed in pancreatic acinar cells and may participate in stimulus-secretion coupling. In addition, our study indicates that pathologic calpain activation may contribute to Ca(2+)-mediated acinar cell damage.