Arg123-Tyr166 domain of human ApoA-I is critical for HDL-mediated inhibition of macrophage homing and early atherosclerosis in mice

Arterioscler Thromb Vasc Biol. 2001 Dec;21(12):1977-83. doi: 10.1161/hq1201.100221.

Abstract

Atherosclerosis was studied in apolipoprotein E (apoE) knockout mice expressing human apolipoprotein A-I (apoA-I) or an apoA-I/apolipoprotein A-II (apoA-II) chimera in which the Arg123-Tyr166 central domain of apoA-I was substituted with the Ser12-Ala75 segment of apoA-II. High density lipoprotein (HDL) cholesterol levels were identical in apoA-I and apoA-I/apoA-II mice, but at 4 months, plaques were 2.7-fold larger in the aortic root of the apoA-I/apoA-II mice (P<0.01). The macrophage-to-smooth muscle cell ratio of lesions was 2.1-fold higher in apo-I/apoA-II mice than in apoA-I mice (P<0.01). This was due to a 2.7-fold higher (P<0.001) in vivo macrophage homing in the aortic root of apoA-I/apoA-II mice. Plasma platelet-activating factor acetyl hydrolase activity was lower (P<0.01) in apoA-I/apoA-II mice, resulting in increased oxidative stress, as evidenced by the higher titer of antibodies against oxidized low density lipoprotein (P<0.01). Increased oxidative stress resulted in increased stimulation of ex vivo macrophage adhesion by apoA-I/apoA-II beta-very low density lipoprotein and decreased inhibition of beta-very low density lipoprotein-induced adhesion by HDL from apoA-I/apoA-II mice. The cellular cholesterol efflux capacity of HDL from apoA-I/apoA-II mice was very similar to that of apoA-I mice. Thus, the Arg123-Tyr166 central domain of apoA-I is critical for reducing oxidative stress, macrophage homing, and early atherosclerosis in apoE knockout mice independent of its role in HDL production and cholesterol efflux.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Apolipoprotein A-I / genetics*
  • Arteriosclerosis / physiopathology*
  • Autoantibodies / analysis
  • Base Sequence
  • Cell Adhesion
  • Chimera
  • Cholesterol, HDL / metabolism*
  • Disease Progression
  • Female
  • Lipoproteins, HDL / blood
  • Lipoproteins, LDL / immunology
  • Macrophages / metabolism*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Mice, Transgenic
  • Oxidative Stress / genetics

Substances

  • Apolipoprotein A-I
  • Autoantibodies
  • Cholesterol, HDL
  • Lipoproteins, HDL
  • Lipoproteins, LDL