Atopic diseases such as allergy and asthma are characterized by increases in Th2 cells and serum IgE antibodies. The binding of allergens to IgE on mast cells triggers the release of several mediators, of which histamine is the most prevalent. Here we show that histamine, together with a maturation signal, acts directly upon immature dendritic cells (iDCs), profoundly altering their T cell polarizing capacity. We demonstrate that iDCs express two active histamine receptors, H1 and H2. Histamine did not significantly affect the LPS-driven maturation of iDCs with regard to phenotypic changes or capacity to prime naive T cells, but it dramatically altered the repertoire of cytokines and chemokines secreted by mature DCs. In particular, histamine, acting upon the H2 receptor for a short period of time, increased IL-10 production and reduced IL-12 secretion. As a result, histamine-matured DCs polarized naive CD4(+) T cells toward a Th2 phenotype, as compared with DCs that had matured in the absence of histamine. We propose that the Th2 cells favor IgE production, leading to increased histamine secretion by mast cells, thus creating a positive feedback loop that could contribute to the severity of atopic diseases.