Sensitization to TRAIL-induced apoptosis and modulation of FLICE-inhibitory protein in B chronic lymphocytic leukemia by actinomycin D

Leukemia. 2001 Dec;15(12):1868-77. doi: 10.1038/sj.leu.2402287.

Abstract

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent activator of the cell death pathway and exerts tumoricidal activity in vivo with minimal toxicity. In order to investigate the therapeutic potential of TRAIL in B chronic lymphocytic leukemia (B-CLL) we have analyzed the expression of TRAIL receptors (TRAIL-Rs) in leukemic cells from B-CLL patients and their in vitro sensitivity to apoptosis induced by recombinant human TRAIL. We have found TRAIL-R1 and -R2 death receptor, and TRAIL-R3 and -R4 decoy receptor mRNA expression in most of the 57 B-CLL patients studied (R1 82%, R2 100%, R3 96% and R4 82%). TRAIL-R1 and R2 proteins were expressed on the surface and within the cells, whereas R3 and R4 decoy receptors were almost exclusively expressed in the cytoplasm. Despite TRAIL death receptor expression, B-CLL cells were relatively resistant to induction of apoptosis by recombinant human TRAIL (300 ng/ml). However, the susceptibility to TRAIL-induced apoptosis was increased by treatment of B-CLL cells with actinomycin D (Act D). Western blot analysis showed higher constitutive expression of the long form of FLICE-inhibitory protein (FLIP(L)) in B-CLL as compared to normal tonsillar B cells. Act D treatment down-regulated both long and short FLIP expression, which was correlated with the increase in B-CLL sensitivity to TRAIL. Although the surface TRAIL death receptor expression was up-regulated both by cell culture and by Act D treatment, the changes were not correlated with a gain in susceptibility to TRAIL. In addition, neither decoy receptors nor Bcl-2 expression were affected by Act D. Our findings suggest the possible involvement of FLIP in regulating TRAIL-mediated apoptosis in B-CLL.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Aged, 80 and over
  • Apoptosis / drug effects*
  • Apoptosis Regulatory Proteins
  • CASP8 and FADD-Like Apoptosis Regulating Protein
  • Carrier Proteins / drug effects*
  • Dactinomycin / pharmacology*
  • Drug Synergism
  • Female
  • GPI-Linked Proteins
  • Humans
  • Intracellular Signaling Peptides and Proteins*
  • Leukemia, Lymphocytic, Chronic, B-Cell / metabolism
  • Leukemia, Lymphocytic, Chronic, B-Cell / pathology*
  • Male
  • Membrane Glycoproteins / genetics
  • Membrane Glycoproteins / pharmacology*
  • Middle Aged
  • RNA, Messenger / drug effects
  • RNA, Messenger / metabolism
  • Receptors, TNF-Related Apoptosis-Inducing Ligand
  • Receptors, Tumor Necrosis Factor / metabolism
  • Receptors, Tumor Necrosis Factor, Member 10c
  • TNF-Related Apoptosis-Inducing Ligand
  • Tumor Necrosis Factor Decoy Receptors
  • Tumor Necrosis Factor-alpha / genetics
  • Tumor Necrosis Factor-alpha / pharmacology*

Substances

  • Apoptosis Regulatory Proteins
  • CASP8 and FADD-Like Apoptosis Regulating Protein
  • CFLAR protein, human
  • Carrier Proteins
  • GPI-Linked Proteins
  • Intracellular Signaling Peptides and Proteins
  • Membrane Glycoproteins
  • RNA, Messenger
  • Receptors, TNF-Related Apoptosis-Inducing Ligand
  • Receptors, Tumor Necrosis Factor
  • Receptors, Tumor Necrosis Factor, Member 10c
  • TNF-Related Apoptosis-Inducing Ligand
  • TNFRSF10A protein, human
  • TNFRSF10B protein, human
  • TNFRSF10C protein, human
  • TNFSF10 protein, human
  • Tumor Necrosis Factor Decoy Receptors
  • Tumor Necrosis Factor-alpha
  • Dactinomycin