An ischemia-induced gene was screened using a differential display technique in mouse transient forebrain ischemia. One of the ischemia-responsive clones was found to encode mouse hsp40. HSP40 has a critical regulatory function in the HSC70 ATPase activity. Expression of hsp40 mRNA was low in the nonischemic mouse hippocampus, but it was significantly upregulated 4 hr after ischemia by Northern blot analysis. In situ hybridization analysis revealed hsp40 mRNA induction in the neuron. HSP40 protein expression was also enhanced in the pyramidal and dentate granular neurons from 2 to 4 days after ischemia. The temporal expression and distribution profile of HSC70 protein was similar to that of HSP40, and both proteins were colocalized in ischemic hippocampal neurons. In the gerbil transient forebrain ischemia model, both HSP40 and HSC70 proteins were expressed strongly in ischemia-resistant CA3 neurons and dentate granule cells 1 day after 5 min ischemia, but were not expressed in vulnerable CA1 neurons. However, both proteins were in parallel expressed in the tolerance-acquired CA1 neurons. Based on the current observation that both HSP40 and HSC70 proteins were synergistically expressed in the ischemia-resistant and tolerance-acquired neurons, cochaperone HSP40 may play a significant role against postischemic neuronal response and lead to cell survival through interaction with simultaneously induced HSC70.
Copyright 2002 Wiley-Liss, Inc.