Glial cells limit local K(+)-accumulation by K(+)-uptake through different mechanisms, sensitive to Ba(2+), ouabaine, furosemide, or DIDS. Since the relative contribution of these mechanisms has not yet been determined, we studied the effects of bath-applied barium (2 mM), ouabaine (9 microM), furosemide (2 mM), and DIDS (1 mM) on ionophoretically-induced rises in [K(+)](o) in the pyramidal layer of area CA1 from normal rat slices, in the presence of glutamate receptor (Glu-R) antagonists. We also investigated the effect of barium on ionophoretically-induced tetrapropylammonium (TPA(+))-signals in order to test for barium-induced changes of the extracellular space. Finally, we repeated the barium experiment on slices from human non-sclerotic and sclerotic hippocampal specimens to assess a reduced glial capability for barium-sensitive K(+)-uptake in sclerotic tissue from epilepsy patients. In normal rat slices barium augmented ionophoretically-induced rises in [K(+)](o) by approximately 120%, also in the presence of tetrodotoxin (TTX) (by approximately 150%), but did not significantly affect the TPA(+)-signal. Ouabaine also augmented the K(+)-signal, but only by 27%. Furosemide and DIDS had negligible effects. In slices from sclerotic human hippocampus an augmentation of the K(+)-signal by barium was absent. Thus barium augments ionophoretically-induced K(+)-signals to a similar extent as previously shown for stimulus-induced signals. We suggest that glial barium-sensitive K(+)-buffer mechanisms reduce fast local rises of [K(+)](o) by at least 50%. This capability of glial cells is extremely reduced in area CA1 of slices from human sclerotic hippocampal specimens.