Leukotriene B(4) is a potent chemoattractant known to be involved mainly in inflammation, immune responses, and host defense against infection, although the exact signaling mechanisms by which it exerts its effects are not well understood. Here we show that exogenous leukotriene B(4) induces reactive oxygen species (ROS) generation via a Rac-dependent pathway, and that stable expression of Rac(N17), a dominant negative Rac1 mutant, completely blocks leukotriene B(4)-induced ROS generation. In addition, leukotriene B(4)-induced ROS generation is selectively blocked by inhibition of ERK or cytosolic phospholipase A(2), but not p38 kinase, which is indicative of its dependence on ERK activation and synthesis of arachidonic acid. Consistent with those findings, leukotriene B(4) Rac-dependently stimulates ERK and cytosolic phospholipase A(2) activity, and transient transfection with plasmid expressing Rac(V12), a constitutively activated Rac1 mutant, also dose-dependently stimulates ERK activity. Our findings suggest that ERK and cytosolic phospholipase A(2) are situated downstream of Rac, and we conclude that Rac, ERK, and cytosolic phospholipase A(2) all play pivotal roles in mediating the ROS generation that appears to be a prerequisite for leukotriene B(4)-induced chemotaxis and cell proliferation.