Shrinkage estimators for covariance matrices

Biometrics. 2001 Dec;57(4):1173-84. doi: 10.1111/j.0006-341x.2001.01173.x.

Abstract

Estimation of covariance matrices in small samples has been studied by many authors. Standard estimators, like the unstructured maximum likelihood estimator (ML) or restricted maximum likelihood (REML) estimator, can be very unstable with the smallest estimated eigenvalues being too small and the largest too big. A standard approach to more stably estimating the matrix in small samples is to compute the ML or REML estimator under some simple structure that involves estimation of fewer parameters, such as compound symmetry or independence. However, these estimators will not be consistent unless the hypothesized structure is correct. If interest focuses on estimation of regression coefficients with correlated (or longitudinal) data, a sandwich estimator of the covariance matrix may be used to provide standard errors for the estimated coefficients that are robust in the sense that they remain consistent under misspecification of the covariance structure. With large matrices, however, the inefficiency of the sandwich estimator becomes worrisome. We consider here two general shrinkage approaches to estimating the covariance matrix and regression coefficients. The first involves shrinking the eigenvalues of the unstructured ML or REML estimator. The second involves shrinking an unstructured estimator toward a structured estimator. For both cases, the data determine the amount of shrinkage. These estimators are consistent and give consistent and asymptotically efficient estimates for regression coefficients. Simulations show the improved operating characteristics of the shrinkage estimators of the covariance matrix and the regression coefficients in finite samples. The final estimator chosen includes a combination of both shrinkage approaches, i.e., shrinking the eigenvalues and then shrinking toward structure. We illustrate our approach on a sleep EEG study that requires estimation of a 24 x 24 covariance matrix and for which inferences on mean parameters critically depend on the covariance estimator chosen. We recommend making inference using a particular shrinkage estimator that provides a reasonable compromise between structured and unstructured estimators.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Analysis of Variance*
  • Bayes Theorem
  • Biometry
  • Electroencephalography / statistics & numerical data
  • Humans
  • Likelihood Functions
  • Linear Models
  • Regression Analysis