The development of yellow-seeded Brassica napus for improving the canola-meal quality characteristics of lower fibre content and higher protein content has been restricted because no yellow-seeded forms of B. napus exist, and their conventional development requires interspecific introgression of yellow seed coat colour genes from related species. A doubled-haploid (DH) population derived from the F1 generation of the cross 'Apollo' (black-seeded) x YN90-1016 (yellow-seeded) B. napus was analysed via bulked segregant analysis to identify molecular markers associated with the yellow-seed trait in B. napus for future implementation in marker-assisted breeding. A single major gene (pigment 1) flanked by eight RAPD markers was identified co-segregating with the yellow seed coat colour trait in the population. This gene explained over 72% of the phenotypic variation in seed coat colour. Further analysis of the yellow-seeded portion of this DH population revealed two additional genes favouring 'Apollo' alleles, explaining 11 and 8.5%, respectively, of the yellow seed coat colour variation. The data suggested that there is a dominant, epistatic interaction between the pigment I locus and the two additional genes. The potential of the markers to be implemented in plant breeding for the yellow-seed trait in B. napus is discussed.