Solid sampling electrothermal atomic absorption spectrometry using the boat technique and a transversely heated graphite tube was applied to direct analysis of graphite and silicon carbide powders for 14 and 12 impurity elements, respectively. With graphite, for all analytes under investigation, a very effective in-situ analyte/matrix separation was achieved. That was the case also for analytes in silicon carbide requiring atomization temperatures below 2400 degrees C. At higher atomization temperatures, the decomposition products of silicon carbide give rise to significant background, which can still be corrected. Sample amounts of up to 4 mg graphite and 8 mg silicon carbide per analysis cycle were applied. For all analytes in both materials, limits of detection at the lower ng g(-1) and sub-ng g(-1) level were achieved, excluding arsenic for which they were 50 ng g(-1) and 23 ng g(-1) for graphite and silicon carbide, respectively. Quantification was performed using calibration curves measured with aqueous standard solutions. The accuracy was checked by comparison of the results with those obtained by instrumental neutron activation analysis and by other independent methods.