Earlier studies have shown that herpes simplex virus type 1 (HSV-1) activated protein kinase R (PKR) but that the product of the product of the gamma(1)34.5 gene binds and redirects the host phosphatase 1 to dephosphorylate the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2alpha). In consequence, the gamma(1)34.5 gene product averts the threatened shutoff of protein synthesis caused by activated PKR. Serial passages of Deltagamma(1)34.5 mutants in human cells led to isolation of two classes of second-site, compensatory mutants. The first, reported earlier, resulted from the juxtaposition of the alpha promoter of the U(S)12 gene to the coding sequence of the U(S)11 gene. The mutant blocks the phosphorylation of eIF-2alpha but does not restore the virulence phenotype of the wild-type virus. We report another class of second-site, compensatory mutants that do not map to the U(S)10-12 domain of the HSV-1 genome. All mutants in this series exhibit sustained late protein synthesis, higher yields in human cells, and reduced phosphorylation of PKR that appears to be phosphatase dependent. Specific dephosphorylation of eIF-2alpha was not demonstrable. At least one mutant in this series exhibited a partial restoration of the virulence phenotype characteristic of the wild-type virus phenotype. The results suggest that the second-site mutations reflect activation of fossilized functions designed to block the interferon response pathways in cells infected with the progenitor of present HSV.