Co-incubation of a replication-deficient, recombinant adenovirus carrying the wild-type p53 gene (rAd-p53) and hematopoietic stem cell (HSC) products from patients with breast cancer can significantly reduce tumor cell contamination. Whereas this approach provides a powerful tumor cell purging strategy, potential detrimental effects on the HSC population have not been investigated. The ability of human HSC to reconstitute hematopoiesis in severe combined immunodeficient (SCID) mice and to undergo secondary transplantation provides the only nonclinical measure of self-renewing, stem cell function. The objective of this study was to investigate whether co-incubation with rAd-p53 compromised the SCID repopulating activity (SRA) of HSC. Granulocyte colony-stimulating factor-mobilized human CD34+ cells were co-cultured with rAd-p53 at our targeted clinical dose, and the ability of these cells to establish multilineage hematopoiesis in sublethally irradiated, nonobese diabetic (NOD)-SCID mice was investigated. The persistence of human cells in the mice was investigated by flow cytometry, granulocyte-macrophage colony-forming unit assay, and polymerase chain reaction of human Alu sequences. Further, limiting dilution analysis provided a quantitative comparison between the SRA of CD34+ cells co-incubated with rAd-p53 and control CD34+ cells (no rAd-p53 co-incubation). We conclude that co-incubation with rAd-p53 has little effect on the SRA of HSC.